organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Qingjian Liu,^a*† Daqing Shi,^b Kaibei Yu^c and Jianhua Xu^d

^aDepartment of Chemistry, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China, ^bDepartment of Chemistry, Xuzhou Normal University, Xuzhou 221009, People's Republic of China, ^cChengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China, and ^dDepartment of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

+ Current address: Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: qjnliu@yahoo.com

Key indicators

Single-crystal X-ray study T = 288 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.039 wR factor = 0.104 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{10}H_{14}N_4S_2$, obtained from the alkylation of methimazole with ethylene dibromide, is centrosymmetric and the two imidazole-2-thione ring moieties are anti-parallel to one another.

1,1'-(1,2-Ethanediyl)bis(2,3-dihydro-3-

methyl-1*H*-imidazole-2-thione)

Comment

Acyclic crown ethers with nitrogen heterocycles as the end groups, which can coordinate and transport metals, continue to receive attention (Vögtle & Weber, 1979; Meth-Cohn & Smith, 1982; Liu & Shi, 1992; Liu *et al.*, 1992, 2001; Matthews *et al.*, 1996). We have reported the syntheses, characterization and coordination properties of non-cyclic crown ethers with methimazole end groups (Liu & Shi, 1992; Liu *et al.*, 1992). We report here the X-ray crystal structure of the title compound, (I).

The whole molecule possesses a centre of symmetry (Fig. 1). The two imidazole-2-thione ring moieties are anti-parallel to one another. The perpendicular distance between the two rings is 1.504 (2) Å. The bridging chain moiety, $-CH_2CH_2-$, adopts an antiperiplanar conformation. The bond lengths and angles in (I) have normal values (Table 1). There is no intermolecular S···S short contact in the crystal packing (Fig. 2).

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids, and the numbering scheme for non-H atoms.

Received 29 January 2003 Accepted 14 February 2003 Online 21 February 2003

This paper is dedicated to Professor Mingli Shi on the occasion of his 70 th birthday.

Experimental

The title compound, (I), was prepared *via* alkylation of methimazole with ethylene dibromide under phase-transfer catalytic conditions (m.p. 467–468.5 K). Single crystals of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethanol solution.

 $D_x = 1.365 \text{ Mg m}^{-3}$

Cell parameters from 27

Mo $K\alpha$ radiation

reflections

 $\mu = 0.41 \text{ mm}^{-1}$

T = 288 (2) K

 $R_{\rm int} = 0.029$ $\theta_{\rm max} = 25.0^{\circ}$

 $h = 0 \rightarrow 5$

 $\begin{array}{l} k=0\rightarrow 23\\ l=-8\rightarrow 8 \end{array}$

3 standard reflections

every 97 reflections intensity decay: 2.9%

Block, colourless $0.40 \times 0.28 \times 0.20$ mm

 $\theta = 4.8\text{--}13.6^\circ$

Crystal data

 $\begin{array}{l} {\rm C_{10}H_{14}N_4S_2}\\ {M_r} = 254.37\\ {\rm Monoclinic,}\ P2_1/c\\ a = 4.667\ (1)\ {\rm \AA}\\ b = 19.720\ (3)\ {\rm \AA}\\ c = 7.037\ (1)\ {\rm \AA}\\ \beta = 107.08\ (1)^\circ\\ V = 619.0\ (2)\ {\rm \AA}^3\\ Z = 2 \end{array}$

Data collection

Siemens P4 diffractometer ω scans Absorption correction: refined from ΔF (SHELXA; Sheldrick, 1997) $T_{min} = 0.860, T_{max} = 0.921$ 1339 measured reflections 1097 independent reflections 804 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^2(F_o^2) + (0.0578P)^2]$
$wR(F^2) = 0.104$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
1097 reflections	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
74 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

S-C1	1.679 (2)	N2-C3	1.381 (3)
N1-C1	1.358 (3)	N2-C4	1.451 (3)
N1-C2	1.374 (3)	C2-C3	1.329 (4)
N2-C1	1.364 (3)		
C1-N1-C5	124.6 (2)	N1-C1-S	127.63 (19)
C1-N2-C4	124.4 (2)	N2-C1-S	127.16 (18)
C3-N2-C4	125.9 (2)		
C5-N1-C1-N2	177.4 (2)	C3-N2-C1-S	-178.99 (19)
C2-N1-C1-S	179.3 (2)	C4-N2-C1-S	-1.1(3)
C5-N1-C1-S	-3.6(3)	C1-N1-C2-C3	-0.4(3)
C4-N2-C1-N1	177.93 (19)	C4-N2-C3-C2	-178.2 (2)

All H atoms were positioned geometrically and treated as riding atoms, with C–H distances of 0.93 or 0.97 Å.

Figure 2 The molecular packing diagram of (I); H atoms are omitted.

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Sheldrick, 1997); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

- Liu, Q. J., Li, L. Z., Liu, K. G., Qi, C. S., Gao, D. T., Li, L. H., Ma, C. L., Pan, F. M., Huang, R. Q. & Qu, R. J. (2001). *Chin. J. Org. Chem.* 21, 160–162.
- Liu, Q. J. & Shi, M. L. (1992). Chin. J. Org. Chem. 12, 509-513.
- Liu, Q. J., Shi, M. L., Jiang, C. Q. & Liu, F. L. (1992). Chem. J. Chin. Univ. 13, 328–331.
- Matthews, C. J., Clegg, W., Elsegood, M. R. J., Leese, T. A., Thorp, D., Thornton, P. & Lockhart, J. C. (1996). J. Chem. Soc. Dalton Trans. pp. 1531– 1538.
- Meth-Cohn, O. & Smith, D. I. (1982). J. Chem. Soc. Perkin Trans. 1, pp. pp. 261–270.
- Sheldrick, G. M. (1997). *SHELXA* and *SHELXTL* (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Vögtle, F. & Weber, E. (1979). Angew. Chem. Int. Ed. 18, 753-776.